Example: A Hollow
 Tube of Current

Consider a hollow cylinder of uniform current, flowing in the \hat{a}_{z} direction:

$$
J(\bar{r})=J_{0} \hat{a}_{z}
$$

The inner surface of the hollow cylinder has radius b, while the outer surface has radius c.

The current density in the hollow cylinder is uniform, thus we can express current density $\mathbf{J}(\bar{r})$ as:

$$
J(\bar{r})=\left\{\begin{array}{ll}
0 & \rho<b \\
J_{0} \hat{a}_{z} & b<\rho<c \\
0 & \rho>c
\end{array} \quad\left[\frac{A m p s}{m^{2}}\right]\right.
$$

Q: What magnetic flux density $\mathrm{B}(\overline{\mathrm{r}})$ is produced by this current density $J(\bar{r})$?

A: We could use the Biot-Savart Law to determine $\mathbf{B}(\bar{r})$, but note that $J(\bar{r})$ is cylindrically symmetric!

In other words, current density $J(\bar{r})$ has the form:

The current is cylindrically symmetric! I suggest you use my law to determine the resulting magnetic flux density.

$$
J(\bar{r})=J_{z}(\rho) \hat{a}_{z}
$$

Recall using Ampere's Law, we determined that cylindrically symmetric current densities produce magnetic flux densities of the form:

$$
\begin{aligned}
\mathbf{B}(\overline{\mathrm{r}}) & =\frac{\mu_{0} I_{\text {enc }}}{2 \pi \rho} \hat{a}_{\phi} \\
& =\hat{a}_{\phi} \frac{\mu_{0}}{\rho} \int_{0}^{\rho} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

Therefore, we must evaluate the integral for the current density in this case. Because of the piecewise nature of the current density, we must evaluate the integral for three different cases:

1) when the radius of the Amperian path is less than b (i.e., $\rho<b$).
2) when the radius of the Amperian path is greater than b but less than c (i.e., $b<\rho<c$).
3) when the radius of the Amperian path is greater than c.
$\rho<b$

Note for $\rho<b, J(\bar{r})=0$ and therefore the integral is zero:

$$
\int_{0}^{p} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}=\int_{0}^{p} 0 \rho^{\prime} d \rho^{\prime}=0
$$

and therefore:

$$
\begin{aligned}
\mathrm{B}(\bar{r}) & =\hat{a}_{\phi} \frac{\mu_{0}}{\rho} 0 \\
& =0 \quad \text { for } \quad \rho<b
\end{aligned}
$$

Thus, the magnetic flux density in the hollow region of the cylinder is zero!
$b<\rho<c$

Note for $b<\rho<c, J(\bar{r})=J_{0} \hat{a}_{z}$ (i.e., $J_{z}(\rho)=J_{0}$) and therefore:

$$
\begin{aligned}
\int_{0}^{p} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime} & =\int_{0}^{b} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}+\int_{b}^{p} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime} \\
& =\int_{0}^{b} 0 \rho^{\prime} d \rho^{\prime}+\int_{b}^{p} J_{0} \rho^{\prime} d \rho^{\prime} \\
& =0+J_{0} \int_{b}^{p} \rho^{\prime} d \rho^{\prime} \\
& =J_{0}\left(\frac{\rho^{2}}{2}-\frac{b^{2}}{2}\right) \\
& =J_{0}\left(\frac{\rho^{2}-b^{2}}{2}\right)
\end{aligned}
$$

and therefore the magnetic flux density in the non-hollow portion of the cylinder is:

$$
\mathbf{B}(\bar{r})=\hat{a}_{\phi} \frac{\mu_{0}}{\rho} J_{0}\left(\frac{\rho^{2}-b^{2}}{2}\right) \quad \text { for } \quad b<\rho<c
$$

$\underline{\rho>c}$
Note that outside the cylinder (i.e., $\rho>c$), the current density $J(\bar{r})$ is again zero, and therefore:

$$
\begin{aligned}
\int_{0}^{0} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime} & =\int_{0}^{b} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}+\int_{b}^{c} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}+\int_{c}^{p} J_{z}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime} \\
& =\int_{0}^{b} 0 \rho^{\prime} d \rho^{\prime}+\int_{b}^{c} J_{0} \rho^{\prime} d \rho^{\prime}+\int_{c}^{o} 0 \rho^{\prime} d \rho^{\prime} \\
& =0+J_{0} \int_{b}^{c} \rho^{\prime} d \rho^{\prime}+0 \\
& =J_{0}\left(\frac{c^{2}}{2}-\frac{b^{2}}{2}\right) \\
& =J_{0}\left(\frac{c^{2}-b^{2}}{2}\right)
\end{aligned}
$$

Thus, the magnetic flux density outside the current cylinder is:

$$
\mathbf{B}(\bar{r})=\hat{a}_{\phi} \frac{\mu_{0}}{\rho} J_{0}\left(\frac{c^{2}-b^{2}}{2}\right) \quad \text { for } \quad c>\rho
$$

Summarizing, we find that the magnetic flux density produced by this hollow tube of current is:

$$
\mathbf{B}(\bar{r})=\left\{\begin{array}{cc}
0 & \rho<b \\
\frac{J_{0} \mu_{0}}{\rho}\left(\frac{\rho^{2}-b^{2}}{2}\right) \hat{a}_{\phi} & b<\rho<c
\end{array}\right]\left[\frac{\text { Webers }}{m^{2}}\right]
$$

We can find an alternative expression by determining the total current flowing through this cylinder (let's call this current I_{0}). We of course can determine I_{0} by performing the surface integral of the current density $J(\bar{r})$ across the cross sectional surface S of the cylinder:

$$
\begin{aligned}
I_{0} & =\iint_{S} J(\bar{r}) \cdot \overline{d s} \\
& =\int_{0}^{2 \pi} \int_{b}^{c} J_{0} \hat{a}_{z} \cdot \hat{a}_{z} \rho d \rho d \phi \\
& =J_{0} \int_{0}^{2 \pi} \int_{b}^{c} \rho d \rho d \phi \\
& =J_{0} \pi\left(c^{2}-b^{2}\right)
\end{aligned}
$$

Therefore, we can conclude that:

$$
J_{0}=\frac{I_{0}}{\pi\left(c^{2}-b^{2}\right)}
$$

Inserting this into the expression for the magnetic flux density, we find:

$$
\mathrm{B}(\overline{\mathrm{r}})=\left\{\begin{array}{cc}
0 & \rho<b \\
\frac{I_{0} \mu_{0}}{2 \pi \rho}\left(\frac{\rho^{2}-b^{2}}{c^{2}-b^{2}}\right) \hat{a}_{\phi} & b<\rho<c \\
\frac{I_{0} \mu_{0}}{2 \pi \rho} \hat{a}_{\phi} & \rho>c
\end{array}\right.
$$

Note the field outside of the cylinder $(\rho>c)$ behaves precisely as would the field from a wire of current I_{0} !

